To solve the questions of the middle heat exchanger of space-based laser cooling system such as large heat transfer area and operating mode instability, a MC-MG (Microchannel-Microgroove) microscale heat exchanger is proposed and experimental study is carried out. The experimental results indicate that as the Reynolds number increases, the Nusselt number originally increases and then keeps constant. While adding the volumetric flow rate of distilled water in the microchannels, the total thermal resistance is first reduced and then becomes steady. With increasing the volumetric flow rate of distilled water, the total quantity of heat transfer increases first, then decreases and finally tends to be constant. The average heat transfer coefficient of the heat exchanger reaches to 1.6 × 104W/ (m2-K) and total thermal resistance is less than 0.21K/W. Therefore the solution to cooling laser with the heat exchanger is preferable.

This content is only available via PDF.
You do not currently have access to this content.