Propulsion mechanisms of microorganisms are based on either beating or screw-like motion of thin elastic biopolymers. Arguably, this motion is optimal for propulsion at very low Reynolds numbers. Similar actuation mechanisms can be utilized in the design of an autonomous microswimmer or even a micropump. In principle, propagation of plane-wave deformations on a thin-membrane placed inside a channel can lead to a net flow in the direction of the wave propagation. In this study we present effects of the amplitude, frequency, and the width of the membrane on the time-averaged flow rate and the rate of work done on the fluid by the membrane by means of three-dimensional transient simulations of flows induced by plane-wave deformations on membranes. Navier-Stokes and continuity equations are used to model the flow on a time-varying domain, which is prescribed with respect to the motion of the membrane. Third party commercial software, COMSOL, is used in to solve the finite-element representation of the 3D time-dependent flow on moving mesh. Numerical simulations show that the flow inside the microchannel depends on the square of the amplitude and is proportional to the excitation frequency. Lastly, characteristic flow rate vs. pressure head curve and efficiency of a typical pump are obtained from 3D transient simulations, and presented here.
Skip Nav Destination
ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
June 18–20, 2007
Puebla, Mexico
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4272-X
PROCEEDINGS PAPER
Numerical Analysis of the 3D Flow Induced by Propagation of Plane-Wave Deformations on Thin Membranes Inside Microchannels
Ahmet Fatih Tabak,
Ahmet Fatih Tabak
Sabanci University, Istanbul, Turkey
Search for other works by this author on:
Serhat Yes¸ilyurt
Serhat Yes¸ilyurt
Sabanci University, Istanbul, Turkey
Search for other works by this author on:
Ahmet Fatih Tabak
Sabanci University, Istanbul, Turkey
Serhat Yes¸ilyurt
Sabanci University, Istanbul, Turkey
Paper No:
ICNMM2007-30135, pp. 577-585; 9 pages
Published Online:
May 28, 2009
Citation
Tabak, AF, & Yes¸ilyurt, S. "Numerical Analysis of the 3D Flow Induced by Propagation of Plane-Wave Deformations on Thin Membranes Inside Microchannels." Proceedings of the ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels. Puebla, Mexico. June 18–20, 2007. pp. 577-585. ASME. https://doi.org/10.1115/ICNMM2007-30135
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Simulation of Structural Deformations of Flexible Piping Systems by Acoustic Excitation
J. Pressure Vessel Technol (August,2007)
Simulation and Analysis of a Magnetoelastically Driven Micro-Pump
J. Fluids Eng (June,2001)
On the Modeling and Simulation of Ion Drag Electrohydrodynamic Micropumps
J. Fluids Eng (May,2011)
Related Chapters
Introduction
Biopolymers Based Micro- and Nano-Materials
Applications of Macro-, Micro- and Nano-Biomaterials Prepared using Biopolymers
Biopolymers Based Micro- and Nano-Materials
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach