A novel technique is presented for non-intrusive microflow control with laser-induced local temperature gradient. In microscale, fluid behavior is quite different from that in macroscale, especially an effect of fluid or interfacial properties on microflow becomes significant. The technique described in this paper utilizes the property change of fluids caused by a light-induced temperature change, i.e., photothermal effect. Absorption of a focused laser beam causes the local spot in temperature. Since the viscosity of general fluids has strong temperature dependence, a generation of local temperature gradient in microfluids results in the corresponding viscosity distribution, which is directly related to the flow behavior in microflow. In order to demonstrate the validity of this concept, we have developed an experimental system to irradiate focused laser beam on a flow in a microfluidic device and to measure velocity profile of the microflow simultaneously. As a heating source, a compact laser diode (LD) with the visible wavelength of 635nm is employed. Velocity measurement is performed by a micro particle image velocimetry (micro-PIV) technique. Optical separation between LD absorption and excitation/emission of fluorescent particle for micro-PIV measurement is confirmed. Change in the microflow behavior in a rectangular microchannel (500 μm × 50 μm) during the LD irradiation due to the photothermal effect is observed.
Skip Nav Destination
ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
June 18–20, 2007
Puebla, Mexico
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4272-X
PROCEEDINGS PAPER
Microflow Behavior of Liquid in the Presence of Laser-Induced Temperature Gradient Available to Purchase
Masahiro Motosuke,
Masahiro Motosuke
Tokyo University of Science, Tokyo, Japan
Search for other works by this author on:
Jun Shimakawa,
Jun Shimakawa
Tokyo University of Science, Tokyo, Japan
Search for other works by this author on:
Shinji Honami
Shinji Honami
Tokyo University of Science, Tokyo, Japan
Search for other works by this author on:
Masahiro Motosuke
Tokyo University of Science, Tokyo, Japan
Jun Shimakawa
Tokyo University of Science, Tokyo, Japan
Shinji Honami
Tokyo University of Science, Tokyo, Japan
Paper No:
ICNMM2007-30132, pp. 569-575; 7 pages
Published Online:
May 28, 2009
Citation
Motosuke, M, Shimakawa, J, & Honami, S. "Microflow Behavior of Liquid in the Presence of Laser-Induced Temperature Gradient." Proceedings of the ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels. Puebla, Mexico. June 18–20, 2007. pp. 569-575. ASME. https://doi.org/10.1115/ICNMM2007-30132
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Analytical Modeling of Laminar Developing Flow Between Hydrophobic Surfaces With Different Slip-Velocities
J. Fluids Eng (April,2022)
The Depth of Correlation in Micro-PIV for High Numerical Aperture and Immersion Objectives
J. Fluids Eng (July,2006)
Asymmetrical Heating in Rarefied Flows Through Circular Microchannels
J. Heat Transfer (September,2014)
Related Chapters
Multiscale Methods for Lightweight Structure and Material Characterization
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
A Two-Channel Detection and Track System Design Based on FPGA and DSP
International Conference on Software Technology and Engineering (ICSTE 2012)
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine