The aim of this paper is to examine experimentally as well as numerically the flowfield resulting from the interaction between a twin circular inclined hot jets emerging into a cooling crossflow. The resulting flowfield is quite complex due to the presence of different vortical structures including the kidney vortex, the horse-shoe vortex, etc... The evolution of the twin inclined jets through the crossflow could be depicted by tracking the mean-flow velocity field and its associated turbulence statistics by means of the PIV technique. This evolution can be influenced by many factors. Herein, we will deal with that resulted by the injection nozzles’ inclination and the jets’ spacing. Then, we performed a three dimensional sample of the studied configuration in order to simulate the evolution of the resulting flowfield. For that, the Navier Stokes equations were simulated with an RSM second order turbulent closure model. Then a non uniform meshing was applied. A good agreement was obtained between the experimental data and the numerical modeling. After validation we could represent in addition to the available results, the temperature distribution and the effects the variation of the injection inclination and that of the jets’ spacing bring on it (on its spatial evolution).

This content is only available via PDF.
You do not currently have access to this content.