Methane and vapor catalytic-reaction is a complex reaction system, and especially CH4/CO2 reaction has an important influence to the methane/vapor reforming reaction. In this paper, the reaction character for methane and vapor catalytic reforming reaction in the micro-chamber wall with Ni catalyst is numerically investigated. The results show that the CH4/CO2 reaction has a vital influence on reactive characteristics in the different H2O/CH4 mole ratio and the mass flow-rate. With increasing the H2O/CH4 mole ratio, the concentration of H2 and CO2 increases, the concentration of CO increases and then decreases, but if the H2O/CH4 mole ratio is more than 2.5, the result is different. The reaction efficiency will descend while the flow-rate increases. The results also display that the methane conversion ratio, the vapor conversion ratio, and the hydrogen concentrations can be up to 81.73%, 69.42%, and 4.29%, while the H2O/CH4 mole ratio, flow-rate and methane/vapor mass flow-rate ratio are 2.5, 7 g/h and 0.1 respectively.

This content is only available via PDF.
You do not currently have access to this content.