Dual-fluid laminar flow in microchannels can be utilised through microfabrication to create polymer membranes at the interface between aqueous and organic solutions. In order to enable smooth membrane growth it is necessary not only to maintain a stable interface between the aqueous and organic phase, but also to minimise near-wall stresses, which affect membrane attachment at the initial stages of membrane formation. The characteristics of the dual-fluid flow in the entrance region of the micro-channel can be significantly affected by the geometry of the inlet and flow rates involved. We present a numerical study of the effects of the inlet geometry on the flow development and near-wall stresses in xylene/water flows, which represent the initial stages of nylon 6,6 membrane formation on the interface between an aqueous solution of hexamethylenediamine and adipoyl chloride solution in xylene. The shape of the inlets considered here varies from a T-inlet (90 degrees inlet angles) to an M-inlet (0 degrees inlet angles). We show that although higher flow rates are needed in order to contain reagents to the narrow region near the interface, the increase of the flow rate leads to significant increase of the shear stresses with the maximum values being obtained in the entrance region thus preventing membrane attachment. CFD validation against experimental data for rhodamine diffusion broadening in a microfluidic is also presented.
Skip Nav Destination
ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels
June 19–21, 2006
Limerick, Ireland
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4760-8
PROCEEDINGS PAPER
Microfluidic Cell Optimization for Polymer Membrane Fabrication
E. Shapiro,
E. Shapiro
Cranfield University, Cranfield, Bedfordshire, UK
Search for other works by this author on:
D. Drikakis,
D. Drikakis
Cranfield University, Cranfield, Bedfordshire, UK
Search for other works by this author on:
P. Vadgama
P. Vadgama
University of London, London, UK
Search for other works by this author on:
E. Shapiro
Cranfield University, Cranfield, Bedfordshire, UK
D. Drikakis
Cranfield University, Cranfield, Bedfordshire, UK
J. Gargiuli
University of London, London, UK
P. Vadgama
University of London, London, UK
Paper No:
ICNMM2006-96221, pp. 829-836; 8 pages
Published Online:
September 15, 2008
Citation
Shapiro, E, Drikakis, D, Gargiuli, J, & Vadgama, P. "Microfluidic Cell Optimization for Polymer Membrane Fabrication." Proceedings of the ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, Parts A and B. Limerick, Ireland. June 19–21, 2006. pp. 829-836. ASME. https://doi.org/10.1115/ICNMM2006-96221
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
A Microfluidic Device to Establish Concentration Gradients Using Reagent Density Differences
J Biomech Eng (December,2010)
Analytical Modeling of Laminar Developing Flow Between Hydrophobic Surfaces With Different Slip-Velocities
J. Fluids Eng (April,2022)
Thermal-Fluid-Dynamic Simulation of a Proton Exchange Membrane Fuel Cell Using a Hierarchical 3D-1D Approach
J. Fuel Cell Sci. Technol (August,2007)
Related Chapters
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine