The design, fabrication, and performance characterization of a passive gas-liquid separation system is presented in this paper. The gas-liquid separation system is silicon-based and its fabrication is compatible with the existing CMU design of the microscale direct methanol fuel cell (DMFC). Both gas and liquid separators consist of staggered arrays of etched-through holes fabricated by deep reactive ion etching (DRIE). The gas separator is coated with a thin layer of hydrophobic polymer to substantiate the gas-liquid separation. To visually characterize the system performance, the gas-liquid separation system is made on a single wafer with a glass plate bonded on the top to form a separation chamber with a narrow gap in between. Benzocyclobutene (BCB) is applied for the low-temperature bonding. The maximum pressure for the liquid leakage of the gas separators is experimentally determined and compared with the values predicted theoretically. Several successful gas-liquid separations are observed at liquid pressures between 14.2 and 22.7 cmH2O, liquid flow rates between 0.705 and 1.786 cc/min, and CO2 flow rates between 0.15160 to 0.20435 cc/min.
Skip Nav Destination
ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels
June 19–21, 2006
Limerick, Ireland
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4760-8
PROCEEDINGS PAPER
Development of a Silicon-Based Passive Gas-Liquid Separation System for Microscale Direct Methanol Fuel Cells
C. C. Hsieh,
C. C. Hsieh
Carnegie Mellon University, Pittsburgh, PA
Search for other works by this author on:
Yousef Alyousef,
Yousef Alyousef
Energy Research Insititute, Riyadh, Saudi Arabia
Search for other works by this author on:
S. C. Yao
S. C. Yao
Carnegie Mellon University, Pittsburgh, PA
Search for other works by this author on:
C. C. Hsieh
Carnegie Mellon University, Pittsburgh, PA
Yousef Alyousef
Energy Research Insititute, Riyadh, Saudi Arabia
S. C. Yao
Carnegie Mellon University, Pittsburgh, PA
Paper No:
ICNMM2006-96084, pp. 779-785; 7 pages
Published Online:
September 15, 2008
Citation
Hsieh, CC, Alyousef, Y, & Yao, SC. "Development of a Silicon-Based Passive Gas-Liquid Separation System for Microscale Direct Methanol Fuel Cells." Proceedings of the ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, Parts A and B. Limerick, Ireland. June 19–21, 2006. pp. 779-785. ASME. https://doi.org/10.1115/ICNMM2006-96084
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Fabrication and Experimental Characterization of Nanochannels
J. Heat Transfer (May,2012)
Catalytic Combustion Systems for Microscale Gas Turbine Engines
J. Eng. Gas Turbines Power (January,2007)
Scratching Test of Hard-Brittle Materials Under High Hydrostatic Pressure
J. Manuf. Sci. Eng (May,2001)
Related Chapters
Introduction
Axial-Flow Compressors
Processing/Structure/Properties Relationships in Polymer Blends for the Development of Functional Polymer Foams
Advances in Multidisciplinary Engineering
Conclusions
Chitosan and Its Derivatives as Promising Drug Delivery Carriers