This paper presents experimental results from research investigating the heat transfer capabilities of microchannel surfaces using a novel force-fed boiling and evaporation technique. The evaporative surfaces being investigated consist of a series of parallel, high-aspect ratio, open topped microchannels. The different sample surfaces vary in channel density, channel aspect ratio, and channel width and have heat transfer surface areas up to ten times their nominal surface areas. Liquid enters the channels of the evaporative surface from above through a developed system of feed channels. This method organizes a liquid-vapor circulation at the boiling surface that results in dissipation of very high heat fluxes in the boiling/thin film evaporation mode. By using the force-fed boiling technique, nominal area heat transfer rates of 100,000 W/m2-K have been achieved with HFE-7100 as the working fluid [1]. In force-fed boiling, the many very short microchannels are working in parallel; therefore the feed pressure and pumping power are very low. This technique may prove valuable to a wide range of heat transfer applications, particularly for heat removal at high heat flux surfaces.

This content is only available via PDF.
You do not currently have access to this content.