The thermal management of electronics is becoming an increasing concern as industry continues to simultaneously push performance while shrinking the size of electronic devices. Microchannel cooling is a promising technology to accommodate the heat dissipation rates and associated fluxes projected for future generations of electronics while also satisfying the need for a reduced footprint to accommodate ever-shrinking device sizes. One shortfall of microchannel cooling, however, is the large pressure drop associated with pumping liquids through microchannels, i.e., channels in which the smallest dimension is between about 1 micron and 1 mm. Superhydrophobic surfaces combine roughness features with low surface energy coatings to create materials with substantially decreased wettability and drag resistance in laminar flows and represent a promising technology for reducing the flow resistance of microchannels. The presence of an (insulating) air layer that is trapped within the superhydrophobic surface, and which separates the microchannel wall from the working fluid, gives rise to a low shear-stress region responsible for the observed reduction in flow resistance. There have been a limited number of studies on the fluid mechanics in superhydrophobic microchannels and, to our knowledge, heat transfer has not been examined. Quantifying the trade-off between the enhanced heat transfer due to pressure drop reduction versus the insulating characteristics of the air layer is of paramount importance for determining the viability of superhydrophobic surfaces as a technology for enhancing microchannel heat transfer. In this work we compute friction factors and Nusselt numbers for the fully-developed (with respect to energy and momentum) flow of a fluid in a parallel-plane microchannel with different heat flux and momentum boundary conditions at the upper and lower channel walls. Two approximations are taken for modeling the superhydrophobic microchannel. In the first case we study the single-phase flow of a fluid in a microchannel where one or both microchannel walls is assumed to be superhydrophobic and where the superhydrophobicity is modeled via application of Navier’s slip model at the microchannel wall. Solutions for the velocity profiles are then employed to calculate theoretical friction factors and Nusselt numbers for the constant heat flux condition. This analysis is then extended to examine the implications on the thermal resistance of a superhydrophobic surface due to the presence of a purely conductive air layer. In the second case we model the fluid flow in the presence of a recirculating air layer that separates the fluid from the microchannel wall. In this instance the low-viscosity air layer gives rise to apparent fluid slip for the working fluid which is dependant on the thickness of the air layer and the viscosity ratio of the two working fluids. This case represents an upper apparent-slip limit as the characteristic spacing of the surface roughness becomes large relative to the channel height and air-layer thickness.
Skip Nav Destination
ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels
June 19–21, 2006
Limerick, Ireland
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4760-8
PROCEEDINGS PAPER
Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls
Ryan Enright,
Ryan Enright
University of Limerick, Limerick, Ireland
Search for other works by this author on:
Cormac Eason,
Cormac Eason
University of Limerick, Limerick, Ireland
Search for other works by this author on:
Tara Dalton,
Tara Dalton
University of Limerick, Limerick, Ireland
Search for other works by this author on:
Todd Salamon,
Todd Salamon
Bell Laboratories, Murray Hill, NJ
Search for other works by this author on:
Paul Kolodner,
Paul Kolodner
Bell Laboratories, Murray Hill, NJ
Search for other works by this author on:
Tom Krupenkin
Tom Krupenkin
Bell Laboratories, Murray Hill, NJ
Search for other works by this author on:
Ryan Enright
University of Limerick, Limerick, Ireland
Cormac Eason
University of Limerick, Limerick, Ireland
Tara Dalton
University of Limerick, Limerick, Ireland
Marc Hodes
Bell Laboratories, Murray Hill, NJ
Todd Salamon
Bell Laboratories, Murray Hill, NJ
Paul Kolodner
Bell Laboratories, Murray Hill, NJ
Tom Krupenkin
Bell Laboratories, Murray Hill, NJ
Paper No:
ICNMM2006-96134, pp. 599-609; 11 pages
Published Online:
September 15, 2008
Citation
Enright, R, Eason, C, Dalton, T, Hodes, M, Salamon, T, Kolodner, P, & Krupenkin, T. "Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls." Proceedings of the ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, Parts A and B. Limerick, Ireland. June 19–21, 2006. pp. 599-609. ASME. https://doi.org/10.1115/ICNMM2006-96134
Download citation file:
36
Views
0
Citations
Related Proceedings Papers
Related Articles
High-Flux Thermal Management With Supercritical Fluids
J. Heat Transfer (December,2016)
A Novel Package-Integrated Cyclone Cooler for the Thermal Management of Power Electronics
J. Electron. Packag (June,2022)
Embedded Two-Phase Cooling of High Flux Electronics Via Press-Fit and Bonded FEEDS Coolers
J. Electron. Packag (September,2018)
Related Chapters
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Fluid Mechanics
Engineering Practice with Oilfield and Drilling Applications
Thermoelectric Coolers
Thermal Management of Microelectronic Equipment