Measurement of the steady-state electroosmotic velocity distributions in microchannels has been reported in the literature. Characterizing time-dependent electrokinetic flows is of importance to the development of microfluidic devices such as rapid capillary electrophoretic separation systems, AC pumps, novel micromixers etc. In this paper, we report a novel technique for studying and quantifying the transient electrokinetic flow phenomena in microchannels using the micro-PIV system with an ordinary PIV CCD camera. This is achieved by synchronizing different trigger signals for the laser, CCD camera, and custom high-voltage switch. Using the transient micro-PIV technique, we further propose a method to determine the electrophoretic component in the particle velocity and the zeta potential of the channel wall. Then the time evolution of the full-field, electroosmotic velocity distributions in both open- and closed-end rectangular microchannels is obtained from the micro-PIV measurement data. Using the slip velocity approach and the measured channel zeta potential, the theoretical predictions of the transient electroosmotic flow in the open- and closed-end microchannels are obtained, and they are found in good agreement with the experimental results.

This content is only available via PDF.
You do not currently have access to this content.