The present study is aimed at evaluating the ability of conventional “macro-pipe” correlations and regime transitions to predict the two-phase thermofluid characteristics of mini-channel cold plates. Use is made of the Taitel-Dukler flow regime maps, seven classical heat transfer coefficient correlations and two dryout predictions. The vast majority of the mini-channel two-phase heat-transfer data, taken from the literature, is predicted to fall in the annular regime, in agreement with the reported observations. A characteristic heat transfer coefficient locus has been identified, with a positive slope following the transition from Intermittent to Annular flow and a negative slope following the onset of partial dryout at higher qualities. While the classical two-phase heat transfer correlations are generally capable of providing good agreement with the low-quality annular flow data the quality at which partial dryout occurs and the ensuing heat transfer rates are not predictable by the available macro-pipe correlations.

This content is only available via PDF.
You do not currently have access to this content.