Mixing of fluids is a common and often critical step in microfluidic systems. In typical large scale processes turbulence greatly speeds the mixing process. At the mini and micro-scales, however, the flow is laminar and the benefits of turbulent mixing are not present. Mixing at the mini- and micro-scales tends to become a more highly engineered process of bringing fluids together in predictable ways to achieve a predetermined and acceptable level of mixing. This paper summarizes a numerical analysis of the mixing performance of a vaned circular micromixer. A newly developed mixing metric suitable for reacting fluids is developed for this study. Applying the basic steps of stretching, cutting, and stacking to effect mixing, a useful micromixer is analyzed numerically for its mixing efficiency. A parametric study of flow and viscosity indicate that a flow Re of 12 or higher is sufficient to achieve effective and rapid mixing in this device.

This content is only available via PDF.
You do not currently have access to this content.