There has been tremendous interest in developing micro technologies towards the integration and automation of Biochips or Lab-on-a-Chip devices due to their wide range of applications in environmental, chemical and biomedical engineering fields. The laminar flow nature in microfluidic devices offers opportunities to microfabricate the desired structures inside microchannels and pattern culturing medium inside microchannels. However, no analysis tools are available to provide optimized configurations for control the flow for microfabrication. Therefore, the goal of this study is to develop a numerical model to study transport phenomena in a cross-linked microchannels aiming to explore an optimized configuration for the microfabrication of specific desired features inside microchannel networks through investigating the effects of controlling parameters on the multistream flow. In this study, electroosmotic flow with induced pressure-driven flow will be employed. This model consists of a set of equations describing the applied potential field, flow field and concentration field in such geometries. The effects of various operational parameters are investigated based on the simultaneous solution to this model, to explore optimized configurations for flow and mass transport control in crossing linked microchannels.

This content is only available via PDF.
You do not currently have access to this content.