BTeV is a high-energy physics experiment, which is designed to proof several aspects of the so-called Standard Model. Precise measurements will reveal if the Standard Model contains breakdowns and therefore they will hint new matters for a more fundamental theory. One of BTeV’s main goals is to precisely measure CP violation in the beauty quark system. CP violation was first observed in strange quarks in 1963 and recently in beauty quarks at BaBar and Belle. CP violation causes particles and antiparticles to behave differently. The BTeV experiment was approved by FERMILAB and was currently being developed. In fact a very recent decision from the Department of Energy (February 2005) cancelled the project due to budget restrictions. A prototype of an innovative detector, called μ-strip detector, is under construction in a team leaded by an Italian group at INFN. The detector is based on copper strips deposited onto 300μm thick high resistivity bulk silicon. A hybrid electronic linked at the two terminals of the strips is positioned on the silicon layer. The system is inserted in a carbon fiber structure and then finally located around the particle beam. Even if the details of the electronic power dissipation and the chip geometry are not yet completely defined, the major constraints of the experiment (radiation hard structure, no mechanical vibration, high signal noise ratio with extremely low electrical charges, low atomic number of the components) have led the μ-strip team to make an effort in direction of a heat-sink based on a PEEK mini-tube system.

This content is only available via PDF.
You do not currently have access to this content.