This paper presents three generically similar impingement liquid coolers that have been engineered for cooling power electronics on future aero gas turbines. The thermal and hydraulic performances of the coolers have been compared with that of a commercial, state-of-the-art pin fin liquid cooler. It is demonstrated that the impingement liquid coolers outperform thermally the baseline pin fin cooler, and with significantly lower pressure drops. The impingement liquid coolers could also be easily modified to trade reduced pressure drop against higher flowrate or reduced thermal performance. A scaling model has also been developed to predict the thermal performances of the coolers for other types of coolants and flow conditions. The model has been applied for predicting the convective thermal performances of the coolers assuming hot aircraft fuel as the coolant. Future work would include an investigation of alternative convective applications in which the cooling system could be systematically explored.

This content is only available via PDF.
You do not currently have access to this content.