The contact phase of an assembly task involving micro and nano building blocks is complicated by the presence of surface and intermolecular forces such as electrostatic, surface-tension and Van der Waals forces. Assembly strategies must account for the presence of these forces in order to guarantee successful repeatable micro and nanoassemblies with high precision. A detailed model for this electrostatic interaction is developed and analyzed. Based on the results of this analysis, dielectrophoretic assembly principles of MEMS/NEMS devices are proposed and experimentally verified with microtweezers for micro Ni parts and with nanoelectrodes fabricated with electron-beam lithography for carbon nanotube assembly. The successful manipulation and assembly of single carbon nanotubes (CNTs) using dielectrophoretic forces produced by nanoelectrodes will lead to a higher integration of CNTs into both nanoelectronics and NEMS.

This content is only available via PDF.
You do not currently have access to this content.