Joule heating is present in electrokinetically driven flow and mass transport in microfluidic systems. Specifically, in the cases of high applied voltages and concentrated buffer solutions, the thermal management may become a problem. In this study, a mathematical model is developed to describe the Joule heating and its effects on electroosmotic flow and mass species transport in microchannels. The proposed model includes the Poisson equation, the modified Navier-Stokes equation, and the conjugate energy equation (for the liquid solution and the capillary wall). Specifically, the ionic concentration distributions are modeled using (i) the general Nernst-Planck equation, and (ii) the simple Boltzmann distribution. These governing equations are coupled through temperature-dependent phenomenological thermal-physical coefficients, and hence they are numerically solved using a finite-volume based CFD technique. A comparison has been made for the results of the ionic concentration distributions and the electroosmotic flow velocity and temperature fields obtained from the Nernst-Planck equation and the Boltzmann equation. The time and spatial developments for both the electroosmotic flow fields and the Joule heating induced temperature fields are presented. In addition, sample species concentration is obtained by numerically solving the mass transport equation, taking into account of the temperature-dependent mass diffusivity and electrophoresis mobility. The results show that the presence of the Joule heating can result in significantly different electroosomotic flow and mass species transport characteristics.

This content is only available via PDF.
You do not currently have access to this content.