The paper presents a theoretical model to predict film condensation heat transfer from a vapor flowing in a horizontal tube with equilateral triangular section minichannels or microchannels. The model is based on fundamental analysis which assumes laminar condensate flow on the channel walls and takes account of surface tension, vapor shear stress and gravity. The case considered here is where the channel wall temperature is uniform and the vapor is saturated at inlet. Sample numerical results are given for the channel size (side of triangle) of 1.0 mm and for refrigerant R134a. The general behaviour of the condensate flow pattern (spanwise and streamwise profiles of the condensate film), as well as streamwise variation in quality and local mean (over section perimeter) heat-transfer coefficient, are qualitatively in accord with expectations on physical grounds.

This content is only available via PDF.
You do not currently have access to this content.