Boiling heat transfer and corresponding two-phase flow phenomena are of significant interest for the design of a compact evaporator. The present work investigates experimentally, using a high-speed digital CCD camera, the two-phase flow phenomena for boiling in a silicon-based, two parallel trapezoid microchannels, which were prepared by the combination of silicon bulk micro machining and Pyrex-silicon wafer bonding. Onset of nucleate boiling, bubbly flow, slug flow, and partial dry out slug flow are typically observed along the flow direction. The appearance of the partial dryout slug flow may degrade the nucleate boiling heat transfer in the microchannel. At a low flow rate, reversed vapor flow is observed. In such a flow pattern, liquid droplets are formed intermittently on the inner wall of top Pyrex glass due to vapor condensation. Moreover, the reversed vapor flow usually accompanies with large magnitude two-phase flow oscillations.

This content is only available via PDF.
You do not currently have access to this content.