In the present study, the local heat transfer and pressure drop characteristics are investigated experimentally for the flow boiling of refrigerant HFC134a in a multi-port extruded tube of 1.06mm in hydraulic diameter. The test tube is 865mm in total length made of aluminum. The pressure drop is measured at an interval of 191 mm, and the local heat transfer coefficient is measured in every subsection of 75mm in effective heating length. Experimental ranges are as follows: the mass velocity of G = 100–700 kg/m2s, the inlet temperature of Tin = 5.9–11.4 °C and inlet pressure of about 0.5 MPa. The data of pressure drop are compared with a few previous correlations for small diameter tubes, and the correlations can predict the data relatively good agreement. The data of heat transfer coefficient is compared with the correlations of Yu et al. proposed for relatively large diameter tubes. It is found that there are some differences about two phase multiplier factor of convective heat transfer between the circular channel and rectangular channel.

This content is only available via PDF.
You do not currently have access to this content.