An overview will be given about investigations on heat and mass transfer in narrow channels and narrow cavities, from work carried out in the last years up to the current status of research of some relevant scientific groups in Europe. The major topics of this report are evaporation heat transfer and the flow boiling pressure drop in narrow channels; microscale heat and mass transfer phenomena in pool boiling from enhanced evaporator tubes with sub-surface channels are also addressed. In the last years a challenging topic has been the enhancement of the efficiency of heat exchangers by employing micro-structured heat transfer surfaces. The need for smaller heat exchangers with higher heat transfer rates and/or smaller thermal approaches is caused by the ongoing miniaturisation of mechanical and electronic components, leading to higher heat fluxes which can damage or even destroy the components. On the other hand, enhanced heat transfer in big equipment, e.g. heat exchangers for the petrochemical and chemical industries, can lead to significant materials and energy savings and thus reduce environmental pollution. Therefore the European Union, European industries and national organisations have supported various projects to develop and to investigate a new generation of heat transfer surfaces, to better understand the related heat transfer phenomena and to model the heat transfer from these micro heat exchanger elements. There is a very extensive research in this scientific field, comprising both flow boiling and pool boiling. The present paper deals with heat transfer in narrow channels and/or cavities and with the flow boiling pressure drop occurring during heat and mass transfer in narrow channels. Investigations of major European institutions, carried out in the past and at the moment will be presented as a contribution to the overview on the current state-of-the-art in Europe, without claim of completeness. Some recent results on microscale pool boiling and flow boiling obtained in our institute will also be presented (Shuai et al., 2002; Kulenovic et al., 2002; Chen et al., 2002a, b).

This content is only available via PDF.
You do not currently have access to this content.