When boiling or condensation occurs inside very small and non-circular channels, capillary forces influence two-phase flow patterns, which in turn determine heat transfer coefficients and pressure drop. A better understanding of the underlying phenomena would be beneficial from the perspective of optimizing the design of compact evaporators and condensers. The thrust of this study was to understand the nature of up-flow boiling and condensation heat transfer in channels with a small gap. It consisted of two parts. The first part included observation of two-phase flow patterns with refrigerant R21 in a test section containing plain fins. The shape of the channels formed between fins was close to rectangular. The test section was placed in a closed refrigerant loop, and it was fabricated with a transparent wall to allow observation of the flow. An electrically heated coil was used to introduce liquid and vapor at the needed quality into the test section. Regimes of slug, froth, annular and cell flow patterns were recognized and the areas of flow pattern were determined. The second part included up-flow boiling and condensation heat transfer measurement with refrigerant R21 in a set of vertical mini-channels consisting of plain fins. An aluminum fin pad was bonded to two dividing aluminum sheets by dip brazing. Heat was supplied to the test section from a thermoelectric module, which utilized the Peltier effect. A thick copper plate was placed between the dividing sheet on each side of the fin passage and the respective Peltier module to establish a uniform wall temperature. Heat transfer coefficient measurements were done under forced flow conditions. Data are obtained for mass flow rates of 30 and 50 kg/m2s under both boiling and condensation modes with wall superheats ranging from 1 to 5K. The dependence of heat transfer coefficient from wall superheat was not observed both for boiling and condensing modes. It shows the primary role of evaporation from thin films in a confined space when the mass flux is small. At low vapor quality the boiling heat transfer coefficients are considerably higher than that for condensation. A high heat flux in ultra thin liquid film area near the channel corner or in the vicinity of liquid-vapor-solid contact line (after the film rupture) supports the high total heat transfer coefficient in evaporation mode. In contrast with evaporation mode, at upflow condensation mode the heat transfer coefficient is strongly dependent on vapor quality. At plug flow regime the vapor velocity determines the condensing heat transfer.
Skip Nav Destination
ASME 2003 1st International Conference on Microchannels and Minichannels
April 24–25, 2003
Rochester, New York, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-3667-3
PROCEEDINGS PAPER
Upflow Boiling and Condensation in Rectangular Minichannels
V. V. Kuznetsov,
V. V. Kuznetsov
Russian Academy of Sciences, Novosibirsk, Russia
Search for other works by this author on:
S. V. Dimov,
S. V. Dimov
Russian Academy of Sciences, Novosibirsk, Russia
Search for other works by this author on:
P. A. Houghton,
P. A. Houghton
Air Products and Chemicals, Inc., Allentown, PA
Search for other works by this author on:
A. S. Shamirzaev,
A. S. Shamirzaev
Russian Academy of Sciences, Novosibirsk, Russia
Search for other works by this author on:
S. Sunder
S. Sunder
Air Products and Chemicals, Inc., Allentown, PA
Search for other works by this author on:
V. V. Kuznetsov
Russian Academy of Sciences, Novosibirsk, Russia
S. V. Dimov
Russian Academy of Sciences, Novosibirsk, Russia
P. A. Houghton
Air Products and Chemicals, Inc., Allentown, PA
A. S. Shamirzaev
Russian Academy of Sciences, Novosibirsk, Russia
S. Sunder
Air Products and Chemicals, Inc., Allentown, PA
Paper No:
ICMM2003-1087, pp. 683-689; 7 pages
Published Online:
February 24, 2009
Citation
Kuznetsov, VV, Dimov, SV, Houghton, PA, Shamirzaev, AS, & Sunder, S. "Upflow Boiling and Condensation in Rectangular Minichannels." Proceedings of the ASME 2003 1st International Conference on Microchannels and Minichannels. 1st International Conference on Microchannels and Minichannels. Rochester, New York, USA. April 24–25, 2003. pp. 683-689. ASME. https://doi.org/10.1115/ICMM2003-1087
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends
J. Heat Transfer (August,2017)
Convective Boiling of R-134a Near the Micro-Macroscale Transition Inside a Vertical Brazed Plate Heat Exchanger
J. Heat Transfer (September,2018)
Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes
J. Heat Transfer (October,2012)
Related Chapters
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment
Liquid Cooled Systems
Thermal Management of Telecommunication Equipment, Second Edition
Liquid Cooled Systems
Thermal Management of Telecommunications Equipment