We have investigated the flow and mass transport within an electroosmotically-pumped incompressible liquid through a meander microchannel system. We employ two-dimensional, time-dependent Finite Element simulations in conjunction with a matched asymptotic treatment of the electrical double layers. The electroosmotic pumping is realized for two idealized and two realistic electrical fields, while a pressure-driven flow is used for comparison. We focus on the aspects of the electroosmotic transport. We find for most of the electroosmotically-driven cases rather complex flow fields, involving recirculation regions. These recirculation regions in all cases increase dispersion. (i) The least dispersion is associated with a plug-type velocity profile, which is obtained for an idealized purely wall-tangential orientation of the electrical field. (ii, iii) We find that both, the idealized horizontal electrical field and the real electrical field between two vertical plates give considerably higher dispersion than the pressure-driven flow. Vertical plate electrodes, therefore, do not allow for a electrical field, which minimizes dispersion. (iv) The arrangement of two point electrodes at the in and out sections likewise proves to be no optimal means to reduce dispersion beyond the pressure-driven flow. Thus, meander geometries of channels, in general, cause severe problems if electroosmotic pumping needs to be achieved in combination with minimized dispersion.

This content is only available via PDF.
You do not currently have access to this content.