The paper proposes a cost-saving analytical methodology using empirical based models to efficiently evaluate design alternatives in the optimization of a CNG converted diesel engine. The procedure is performed in five steps. Firstly, a database of different combustion chambers that can be obtained from the original piston is obtained. The chambers in the database differ for the shape of the bowl, the value of the compression ratio, the offset of the bowl and the size of the squish region. The second step of the procedure is the selection, from the first database, of the combustion chambers able to resist to the mechanical stresses due to the pressure and temperature distribution at full load. For each combination of suitable combustion chamber shape and ignition timing, a CFD simulation is used to evaluate the combustion performance of the engine. Then, a post-processing procedure is used to evaluate the detonation tendency and intensity of each combination. All the tools developed for the application of the method have been linked in the ModeFrontier optimization environment in order to perform the final choice of the combustion chamber.
The overall process requires not more of a week of computation on the 4 processor servers considered for the optimization. Moreover, the selected chambers can be obtained from the original piston of the engine. Therefore, the conversion cost of the engine is quite small compared with the case of a completely new piston. The procedure can be applied to diesel engines to be converted to either CNG dedicated or dual fuel combustion. The main aspects and challenges to be taken into account in both cases are also analyzed.