Variable displacement lubricant pumps allow oil flow to be matched to engine requirements over the whole operating range, reducing energy losses through excessive pumping work. An experimental investigation has been performed on-engine to understand the effects of such devices. Significant instrumentation was fitted to the production, EURO IV specification, 2.4L Diesel engine to assess the impacts of lubricant flow on thermal state. The reduced oil flow was measured as a reduction in engine oil pressure with the production pump supplying 4–6bar whereas the variable flow device provided pressures as low as 1–2bar.

The reduction in oil flow significantly reduced the oil pump energy consumption, measured as a change in indicated work, resulting in a 4% benefit in fuel economy over both hot and cold start NEDC. The reduced oil flow also impacted oil and metal temperatures: during engine warm-up, oil temperatures were approximately 4°C colder with the lower flow as a result of less work input from the oil pump. Conversely, cylinder liner temperatures were 2–6°C hotter both during warm-up and fully warm conditions as a result of reduced piston cooling from piston cooling jets. The changes in thermal state were reflected by changes in emissions with a 3% increase in NOx and a 3–5% reduction in HC and CO.

The calibration of the variable flow device follows a fuel consumption/NOx trade-off that is more favourable to fuel economy than conventional control parameters. However, these benefits are strongly linked to engine duty cycle with larger benefits at higher engine speeds.

This content is only available via PDF.
You do not currently have access to this content.