An experimental investigation has been carried out on a diesel 1000 cc, two-valve, three-cylinder, engine for heavy quadricycle and off-road applications. The engine was equipped with a unit-pump common rail injection system, automotive derived, with maximum pressure 140 MPa and ECU able to manage multinjection strategies in Euro 4 target for the foreseen applications.
Experimental investigations on the fuel spray have been carried out in an optically accessible vessel at engine gas density. Spatial and temporal spray behavior has been studied by image processing of the evolving jet pictures. Spray tip penetrations, cone angles and fuel spatial density analysis have been extracted and correlated to the injection and engine parameters. On the other side, visible flame propagation and soot formation process have been evaluated by digital imaging at high spatial and temporal resolution using a quartz window of the third cylinder obtained modifying the engine head. Strategies consisting of two injections per cycle, pilot and main, and typical of real engine working conditions have been investigated in the pressure range 43–116 MPa both in terms of injection rates and injected fuel dispersion. The effects of different injection strategies on soot formation and exhaust emissions have been evaluated.