A reduction in diesel engine fuel consumption at a constant emissions level can be achieved by various means. A power turbine as a means of waste heat recovery (i.e., turbocompounding) and altered intake valve closure timing (Miller cycle) are two such mechanisms. Each of these technologies act as a means of improving the expansion process of the combustion gases, requiring reduced fueling for the same work extraction. When these embodiments are typically implemented, the timing of the exhaust valve opening is maintained. However, optimization of the timing of the exhaust valve opening presents the potential for further improvement in the expansion process. Variations in the exhaust valve opening timing will be investigated for Miller and turbocompounding cycles as well as the combination of the two features. Results will be shown to quantify the impact these variations have in system efficiency. Second law analysis will be used to show how these variations in engine configurations impact individual loss mechanisms. Finally, comparisons will be made to show the relative differences between Miller cycle and turbocompounding with and without optimization of the exhaust valve timing.

This content is only available via PDF.
You do not currently have access to this content.