A prototype Diesel common rail direct-acting piezoelectric injector has been used to study the influence of fuel injection rate shaping on spray behavior (liquid phase penetration) under evaporative and non-reacting conditions. This state of the art injector allows a fully flexible control of the nozzle needle, enabling various fuel injection rates typologies under a wide range of test conditions. The tests have been performed employing a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic test conditions (up to 1000 K and 15 MPa). The temporal evolution of the spray has been studied recording movies of the injection event with a fast camera (25 kfps) by means of the Mie scattering visualization technique. The analysis of the results showed a strong influence of needle position on the behavior of the liquid length. The needle position controls the effective pressure upstream of the nozzle holes. Higher needle lift is equivalent to higher effective pressures. According to the free-jet theory, the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on injection velocity. Therefore, higher injection pressures gives slightly lower liquid length due to small change in the spray cone-angle. However, partial needle lifts has an opposite effect: lower effective pressure upstream of the nozzle holes shows a dramatic increase on the spray cone-angle, reducing the liquid length. This behavior could be explained mainly due to the fact that the flow direction upstream of the nozzle holes is affecting the area coefficient, or in other words, the effective diameter of the holes.

This content is only available via PDF.
You do not currently have access to this content.