Spark ignition constitutes the most common way of mixture inflammation for gas engines of CHP units (combined heat and power). However, spark plug durability is limited due to spark erosion. High maintenance costs as a result of frequent spark plug replacements are the consequence. Beside the durability aspect, the inflammation of lean mixtures makes high demands on the inflammation process itself. Due to the small reactive mixture volume, the level of air-fuel ratio as well as the efficiency increase is limited. The ignition by means of a hot surface enables an increase of the reactive mixture volume and, as a result, an enhancement of the lean burn limit.

A hot surface ignition (HSI) system was developed for stationary lean burn operation in due consideration of low manufacturing costs and electrical characteristics that allow a reliable control of the ignition timing. The main component of the inflammation element is a pin-shaped glow plug, whose temperature can be regulated by adjusting the electrical power. Due to external influences such as fluctuating ambient pressure and gas quality a control unit is essential for securing an optimal combustion phasing of the engine.

Several designs of hot surface ignition, including passive prechamber and shielded versions, were tested on a single cylinder test bed engine operating with a homogeneous air-petrol mixture. The engine tests were accompanied by 3D flow simulations. The trials showed that the power consumption, and hence the temperature of the hot surface, as well as the flow conditions around the glow plug have a strong influence on the ignition timing. Furthermore, a strong correlation between the mean combustion chamber temperature and combustion phasing became evident. Based on this coherence, it was possible to develop a closed-loop control that adjusts the combustion phasing by controlling the combustion chamber temperature at a stationary operating point.

The shielded inflammation element stood out to be the target-aiming version of hot surface ignition. It is characterised by an accelerated inflammation which allows reducing the cycle-to-cycle variations compared to prechamber spark ignition and, hence, to enhance the lean burn limit. As a result, a significant improvement of the efficiency-NOx trade-off is possible.

The obtained results provide the basis for further trials on a gas engine CHP module operating with natural gas.

This content is only available via PDF.
You do not currently have access to this content.