The purpose of this work is to investigate the spray-atomization, combustion and emissions characteristics of biodiesel-bioethanol (BE) and biodiesel-diesel (BD) blended fuels compared with an undiluted biodiesel fuel. For studying the overall spray characteristics, the spray tip penetration, spray cone angle were analyzed from the spray images, and droplet size and distribution were analyzed from the droplet measuring system. In addition, the combustion and exhaust emissions characteristics including the nano-size particle number and size distribution of particulate matter were studied using the direct injection diesel engine with a single cylinder. In this investigation, it revealed that BE and BD blended fuels have slightly higher spray tip penetration and wider spray cone angle due to the reduction of fuel properties such as fuel density and kinematic viscosity. Fuel droplet sizes of blended fuels were distributed in the region of the lower diameter size, compared to biodiesel fuel. It can be said that the reduced fuel viscosity and surface tension of blended fuels affect the atomization performance of biodiesel fuel. The experimental results of spray characteristics were compared with the predicted results through the numerical method by the KIVA-3V. On the other hand, BD blended fuel has a similar combustion and emission characteristics compared with an undiluted biodiesel fuel. In case of BE blended fuel, the ignition delay becomes longer and the rate of heat release becomes high. In the case of exhaust emission characteristics of BE blended fuel, it has lower soot emission, contrary to the almost same nitrogen oxides, hydrocarbon, and carbon monoxide. In the analysis of particle size and number distribution, the number and size distribution of B100 and BD20 fuels have a similar pattern and value. However, BE blended fuel has a lowest particle number in the region of nuclei mode. Moreover, the increase of the injection pressure affects the increase of the smaller size particle of BE blended fuel.
Skip Nav Destination
ASME 2009 Internal Combustion Engine Division Spring Technical Conference
May 3–6, 2009
Milwaukee, Wisconsin, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-4340-6
PROCEEDINGS PAPER
Effect of the Spray-Atomization Characteristics on the Nano Size Particle Exhaust Emissions Characteristics Using Biodiesel-Bioethanol Blended Fuels in a DI Diesel Engine With Common Rail Injection System
Su Han Park,
Su Han Park
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Seung Hyun Yoon,
Seung Hyun Yoon
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Hyung Jun Kim,
Hyung Jun Kim
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Chang Sik Lee
Chang Sik Lee
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Su Han Park
Hanyang University, Seoul, South Korea
Seung Hyun Yoon
Hanyang University, Seoul, South Korea
Hyung Jun Kim
Hanyang University, Seoul, South Korea
Chang Sik Lee
Hanyang University, Seoul, South Korea
Paper No:
ICES2009-76062, pp. 67-76; 10 pages
Published Online:
August 20, 2009
Citation
Park, SH, Yoon, SH, Kim, HJ, & Lee, CS. "Effect of the Spray-Atomization Characteristics on the Nano Size Particle Exhaust Emissions Characteristics Using Biodiesel-Bioethanol Blended Fuels in a DI Diesel Engine With Common Rail Injection System." Proceedings of the ASME 2009 Internal Combustion Engine Division Spring Technical Conference. ASME 2009 Internal Combustion Engine Division Spring Technical Conference. Milwaukee, Wisconsin, USA. May 3–6, 2009. pp. 67-76. ASME. https://doi.org/10.1115/ICES2009-76062
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Comparison of Filter Smoke Number and Elemental Carbon Mass From Partially Premixed Low Temperature Combustion in a Direct-Injection Diesel Engine
J. Eng. Gas Turbines Power (October,2011)
A Numerical Analysis of the Emissions Characteristics of Biodiesel Blended Fuels
J. Eng. Gas Turbines Power (January,1999)
Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine
J. Energy Resour. Technol (December,2010)
Related Chapters
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Hydro Tasmania — King Island Case Study
Hydro, Wave and Tidal Energy Applications
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration