A numerical study on the investigation of spray evolution and liquid film formation within the combustion chamber of a current production automotive Gasoline Direct Injected (GDI) engine characterised by a swirl-type side mounted injector is presented. Particularly, the paper focuses on low-temperature cranking operation of the engine, when, in view of the high injected fuel amount and the strongly reduced fuel vaporisation, wall wetting becomes a critical issue and plays a fundamental role on the early combustion stages. In fact, under such conditions, fuel deposits around the spark plug region can affect the ignition process, and even prevent engine start-up. In order to properly investigate and understand the many involved phenomena, experimental visualisation of the full injection process by means of an optically accessible engine would be a very useful tool. Nevertheless, the application of such technique, far from being feasible from an industrial point of view, appears to be very difficult even in research laboratories, due to the relevant wall wetting at cranking conditions. A numerical program was therefore carried out in order to analyze in depth and investigate the wall/spray interaction and the subsequent fuel deposit distribution on the combustion chamber walls. The CFD model describing the spray conditions at the injector nozzle was previously implemented and validated against experimental evidence. Many different injection strategies were tested and results compared in terms of both fuel film characteristics and fuel/air mixture distribution within the combustion chamber. Low-temperature cranking conditions proved to be an open challenge for the in-cylinder numerical simulations, due to the simultaneous presence of many physical sub-models (spray evolution, droplet-droplet interaction, droplet-wall interaction, liquid-film) and the very low motored engine speed. Nevertheless, the use of a properly customized and validated numerical setup led to a good understanding of the overall injection process as well as of the effects of both injection strategy and spray orientation modifications on both the air/fuel and fuel/wall interaction.
Skip Nav Destination
ASME 2009 Internal Combustion Engine Division Spring Technical Conference
May 3–6, 2009
Milwaukee, Wisconsin, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-4340-6
PROCEEDINGS PAPER
CFD Investigation of Fuel Film Formation Within a GDI Engine Under Cold Start Cranking Operation
Simone Malaguti,
Simone Malaguti
University of Modena and Reggio Emilia, Modena, Italy
Search for other works by this author on:
Stefano Fontanesi
Stefano Fontanesi
University of Modena and Reggio Emilia, Modena, Italy
Search for other works by this author on:
Simone Malaguti
University of Modena and Reggio Emilia, Modena, Italy
Stefano Fontanesi
University of Modena and Reggio Emilia, Modena, Italy
Paper No:
ICES2009-76055, pp. 555-562; 8 pages
Published Online:
August 20, 2009
Citation
Malaguti, S, & Fontanesi, S. "CFD Investigation of Fuel Film Formation Within a GDI Engine Under Cold Start Cranking Operation." Proceedings of the ASME 2009 Internal Combustion Engine Division Spring Technical Conference. ASME 2009 Internal Combustion Engine Division Spring Technical Conference. Milwaukee, Wisconsin, USA. May 3–6, 2009. pp. 555-562. ASME. https://doi.org/10.1115/ICES2009-76055
Download citation file:
3
Views
0
Citations
Related Proceedings Papers
Related Articles
Modeling Mixture Formation in a Gasoline Direct Injection Engine
J. Appl. Mech (November,2006)
A Numerical Investigation of Combustion and Mixture Formation in a Compressed Natural Gas DISI Engine With Centrally Mounted Single-Hole Injector
J. Fluids Eng (September,2013)
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
J. Energy Resour. Technol (September,2016)
Related Chapters
Internal and Near Nozzle Flow Simulations of Gasoline Multi-Hole Injector (ECN Spray G) with Transient Needle Motion
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gasoline-Like Fuels
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Numerical Simulation of Internal Flow for Nozzle on Gasoline Direct Injection Engine
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3