Biodiesel has different physical and chemical properties than ultra low sulfur diesel fuel (ULSD). The low volatility of biodiesel is expected to affect the physical processes, mainly fuel evaporation and combustible mixture formation. The higher cetane number of biodiesel is expected to affect the rates of the chemical reactions. The combination of these two fuel properties has an impact on the auto ignition process, subsequently combustion and engine out emissions. Applying different swirl ratios and injection pressures affect both the physical and chemical processes. The focus of this paper is to investigate the effect of varying the swirl ratio and injection pressure in a single-cylinder research diesel engine using a blend of biodiesel and ULSD fuel. The engine is a High Speed Direct Injection (HSDI) equipped with a common rail injection system, EGR system and a swirl control mechanism. The engine is operated under simulated turbocharged conditions with 3 bar Indicated Mean Effective Pressure (IMEP) at 1500 rpm, using 100% ULSD and a blend of 20% biodiesel and 80% ULSD fuel. The biodiesel is developed from soy bean oil. A detailed analysis of the apparent rate of heat release (ARHR) is made to determine the role of the biodiesel component of B-20 in the combustible mixture formation, autoignition process, premixed, mixing controlled and diffusion controlled combustion fractions. The results explain the factors that cause an increase or a drop in NOx emissions reported in the literature when using biodiesel.

You do not currently have access to this content.