The application of the improved CFD code for the simulation of combustion and emission formation in a high-speed diesel engine has been presented and discussed. The soot concentration transport equation is found and solved together with all other flow equations. A slip correction factor is introduced into this equation. In turbulent combustion, the soot particles are contained within the turbulent eddies, and burnt up swiftly with the dissipation of these eddies in the soot oxidation zone. However, the chemical reactions always process except the dissipation of turbulent eddies and the intermixing of soot particles and turbulent eddies. The soot oxidation rate should be controlled simultaneity by the chemical reactions rate and the dissipation rate of turbulent eddies. A hybrid particle turbulent transport controlled rate and soot oxidation rate model is present in this paper and Soot formation and oxidation processes have been modeled according to this model. A reasonable agreement of the measured and computed data of in-cylinder pressure, soot, and NO emissions for different engine operation conditions has been made. The precision of simulated soot concentration is improved compare with the commonly Hiroyasu—Nagel—Strickland (HNS) soot model.

This content is only available via PDF.
You do not currently have access to this content.