Although hydrogen is considered one of the most promising future energy carriers, there are several challenges to achieving a “hydrogen economy,” including finding a practical, efficient, cost-effective end-use device. Using hydrogen as a fuel for internal combustion engines is seen as a bridging technology toward a large-scale hydrogen infrastructure. To facilitate high-efficiency, high-power-density use of hydrogen with near-zero emissions in an internal combustion engine, detailed analysis of the hydrogen combustion process is necessary. This paper presents thermodynamic results regarding engine performance and emissions behavior during investigations performed on a single-cylinder research engine fueled by pressurized gaseous hydrogen. Avoiding combustion anomalies is one of the necessary steps to further improve the hydrogen engine power output at high-load operation while, at the same time, reducing fuel consumption and emissions during part-load operation. The overall target of the investigations is an improved combustion concept especially designed for hydrogen-engine-powered vehicles. Future activities include performing optical imaging of hydrogen combustion by using an endoscope. We will also investigate supercharged external mixture formation, as well as hydrogen direct-injection operation.

This content is only available via PDF.
You do not currently have access to this content.