The paper analyses, by means of a parallel experimental and computational investigation, the performances of a small HSDI turbocharged Diesel engine. As far as the numerical approach is concerned, an in-house ID research code for the simulation of the whole engine system has been enhanced by the introduction of a multi-zone quasi-dimensional combustion model, tailored for multi-jet direct injection Diesel engines. This model takes into account the most relevant issues of the combustion process: the spray development, the in-cylinder air-fuel mixing process, the ignition and formation of the main pollutant species, such as nitrogen oxides and particulate. The prediction of the spray basic patterns requires the previous knowledge of the fuel injection rate. Since the direct measure of this quantity at each operating condition is not a very practical proceeding, an empirical model has been developed in order to provide reasonably accurate injection laws from a few experimental characteristic curves. The results of the simulation at full load are compared to experiments, showing a good agreement on brake performance and emissions. Furthermore, the combustion model tuned at full load has been applied without any change to the analysis of some operating conditions at partial load. Still, the numerical simulation provided results which qualitatively agree with experiments.

This content is only available via PDF.
You do not currently have access to this content.