Abstract

A monitoring and surveillance system is a mandatory element to ensure that a radioactive waste disposal facility provides and meets the required level of safety during both its operational and closure periods. In this study an innovative approach for the identification and monitoring of the structural integrity of stored radioactive drums is presented. The activities were carried out in the context of the European Project PREDIS, whose goal is the development of a robust and reliable sensing technology for monitoring and long-term storage of radioactive waste packaging systems.

Specifically, the focus was set on the development of innovative and smart sensor technologies, non-destructive examination tools, and/or devices capable to improve the safety of the storage by minimizing the number of interventions of cemented waste packages. Both conventional and innovative techniques, such as muon-tomography, SiLiF neutron and SciFi gamma detection, or contactless and smart radio transceiver technology provided with radiation monitoring sensors, have been considered and adapted for the use under repository conditions. Indeed, gamma and neutron detection techniques exploit the radiological information coming from inside the drums, while imaging techniques proved to be effective in spotting high density objects embedded inside the concrete: together, they allow to improve safety and security and can provide an early alert on behavioral changes hinting at anomalies in the drums.

This content is only available via PDF.
You do not currently have access to this content.