Soil is an essential component of all terrestrial ecosystems and is under increasing threat from human activity. Techniques available for removing radioactive contamination from soil and aquatic substrates are limited and often costly to implement; particularly over large areas. Frequently, bulk soil removal, with its attendant consequences, is a significant component of the majority of contamination incidents. Alternative techniques capable of removing contamination or exposure pathways without damaging or removing the soil are therefore of significant interest. An increasing number of old nuclear facilities are entering ‘care and maintenance’, with significant ground contamination issues. Phytoremediation — the use of plants’ natural metabolic processes to remediate contaminated sites is one possible solution. Its key mechanisms include phytoextraction and phytostabilisation. These are analogues of existing remedial techniques. Further, phytoremediation can improve soil quality and stability and restore functionality. Information on the application of phytoremediation in the nuclear industry is widely distributed over an extended period of time and sources. It is therefore difficult to quickly and effectively identify which plants would be most suitable for phytoremediation on a site by site basis. In response, a phytoremediation tool has been developed to address this issue. Existing research and case studies were reviewed to understand the mechanisms of phytoremediation, its effectiveness and the benefits and limitations of implementation. The potential for cost recovery from a phytoremediation system is also briefly considered. An overview of this information is provided here. From this data, a set of matrices was developed to guide potential users through the plant selection process. The matrices take the user through a preliminary screening process to determine whether the contamination present at their site is amenable to phytoremediation, and to give a rough indication as to what plants might be suitable. The second two allow the user to target specific plant species that would be most likely to successfully establish based on prevailing site conditions. The outcome of this study is a phytoremediation tool that can facilitate the development of phytoremediation projects, avoiding the need for in-depth research to identify optimal plant species on a case-by-case basis.

This content is only available via PDF.
You do not currently have access to this content.