As the worldwide hydraulic fracturing ‘fracking’ market continued to grow to an estimated $37 Billion in 2012, the need to understand and manage radiological issues associated with fracking is becoming imperative. Fracking is a technique that injects pressurized fluid into rock layer to propagate fractures that allows natural gas and other petroleum products to be more easily extracted. Radioactivity is associated with fracking in two ways. Radioactive tracers are frequently a component of the injection fluid used to determine the injection profile and locations of fractures. Second, because there are naturally-occurring radioactive materials (NORM) in the media surrounding and containing oil and gas deposits, the process of fracking can dislodge radioactive materials and transport them to the surface in the wastewater and gases.

Treatment of the wastewater to remove heavy metals and other contaminates can concentrate the NORM into technologically-enhanced NORM (TENORM). Regulations to classify, transport, and dispose of the TENORM and other radioactive waste can be complicated and cumbersome and vary widely in the international community and even between states/provinces. In many cases, regulations on NORM and TENORM do not even exist. Public scrutiny and regulator pressure will only continue to increase as the world demands on oil and gas continue to rise and greater quantities of TENORM materials are produced. Industry experts, health physicists, regulators, and public communities must work together to understand and manage radiological issues to ensure reasonable and effective regulations protective of the public, environment, and worker safety and health are implemented.

This content is only available via PDF.
You do not currently have access to this content.