Because Ca-dissolution from cementitious material is considered a source of long-term alteration of the performance of radioactive waste repositories, much research including dissolution tests has been conducted on this topic. These studies have introduced models such as Atkinson’s model [1] to calculate the leaching of cementitious material. These models have been used to verify that the results of many studies do represent the alteration of cementitious minerals and the composition of the leachate. They have also been used to make numerous estimates of long-term mineralogical alteration in repositories, such as cement-clay interaction in cementitious barrier systems, and to evaluate the change in repository performance. However, immersion tests using bulky cementitious material have often indicated that the actual alteration of cementitious material might be slower than the rates calculated by these models. This difference may be due to a change of mass-transport characteristics, either in the bulky cementitious material or at the interfaces with other materials. In this study, a mineralogical analysis was conducted on two types of old concrete. Drilled cores from the foundations of rotary kilns at two cement factories were collected beneath the groundwater level. Both concrete structures were made from Japanese ordinary Portland cement (OPC), which is similar to European type 1 cement. One structure had been set into a fresh groundwater environment for 78 years (78-F), and the other had set sunk into a saline environment for 98 years (98-S).

This content is only available via PDF.
You do not currently have access to this content.