In-situ tracer tests are a valuable approach to obtain parameters for a performance assessment of nuclear waste repository. A one-dimensional model is simple and is commonly used to identify radionuclide transport parameters by fitting breakthrough curves simulated using the model to those obtained from tracer tests. However, this method can increase uncertainty and introduce errors in the estimated parameters. In particular, such uncertainties and errors will be significant when evaluating parameters for tests conducted in a dipole (two-dimensional) flow field between injection and withdrawal wells. This paper describes a numerical analysis investigation into the effects of various experimental conditions on parameters estimated using a one-dimensional model for cases involving tracer tests in a two-dimensional fracture plane. Results show that longitudinal dispersivity tends to be overestimated by the one-dimensional model analysis. This overestimation is the result of several factors: smaller pumping rate, larger dipole ratio, stronger heterogeneity of the fracture hydraulic conductivity, and greater orthogonally-oriented background groundwater flow. Such information will help us to better plan and design tracer tests at underground research laboratories located in both Mizunami in central Japan and Horonobe in northern Japan. Understanding appropriate experimental conditions will help decrease the uncertainty in the results of tracer tests.

This content is only available via PDF.
You do not currently have access to this content.