Fission reaction of U-235 and/or plutonium generates more than 40 elements and 400 nuclides in the spent fuel. Among them, 31 elements are categorized as rare metals. In a conventional fuel cycle U and Pu are reused but others are vitrified for disposal. Adv.-ORIENT (Advanced Optimization by Recycling Instructive Elements) Cycle strategy was drawn up for the minimization of radio-toxicity and volume of radioactive waste as well as the utilization of valuable elements/nuclides in the waste. The present paper describes the progress on Fission Products (FP) separation in this Cycle. Highly functional inorganic adsorbent (AMP-SG, silica gel loaded with ammonium molybdophosphate) and organic microcapsule (CE-ALG, alginate gel polymer enclosed with crown ether D18C6) were developed for separation of heat-generating Cs and Sr nuclides, respectively. The AMP-SG adsorbed more than 99% of Cs selectively from a simulated High-level Liquid Waste (HLLW). The ALG microcapsule adsorbed 0.0249 mmol/g of Sr and exhibited the order of its selectivity; Ba > Sr > Pd >> Ru > Rb > Ag. The electrodeposition is advantageous for both recovery and utilization of PGMs (Ru, Rh, Pd) and Tc because PGMs are recovered as metal on Pt electrode. Among PGMs, Pd was easily deposited on the Pt electrode. In the presence of Pd or Rh the reduction of Ru and Tc was accelerated more in hydrochloric acid media than in nitric acid. In the simulated HLLW, the redox reaction of Fe(III)/Fe(II) disturbed deposition of elements except for Pd. The deposits on Pt electrode showed higher catalytic reactivity on electrolytic hydrogen production than the original Pt electrode. The reactivity of deposits prepared from the simulated HLLW was higher than that from solution containing only PGM.

This content is only available via PDF.
You do not currently have access to this content.