The activities performed during nuclear installation decommissioning process inevitably lead to the production of large amount of radioactive material to be managed. Significant part of materials has such low radioactivity level that allows them to be released to the environment without any restriction for further use. On the other hand, for materials with radioactivity slightly above the defined unconditional clearance level, there is a possibility to release them conditionally for a specific purpose in accordance with developed scenario assuring that radiation exposure limits for population not to be exceeded. The procedure of managing such decommissioning materials, mentioned above, could lead to recycling and reuse of more solid materials and to save the radioactive waste repository volume. In the paper an implementation of the process of conditional release to the OMEGA Code is analyzed in details; the Code is used for calculation of decommissioning parameters. The analytical approach in the material parameters assessment, firstly, assumes a definition of radiological limit conditions, based on the evaluation of possible scenarios for conditionally released materials, and their application to appropriate sorter type in existing material and radioactivity flow system. Other calculation procedures with relevant technological or economical parameters, mathematically describing e.g. final radiation monitoring or transport outside the locality, are applied to the OMEGA Code in the next step. Together with limits, new procedures creating independent material stream allow evaluation of conditional material release process during decommissioning. Model calculations evaluating various scenarios with different input parameters and considering conditional release of materials to the environment are performed to verify the implemented methodology. Output parameters and results of the model assessment are presented, discussed and concluded in the final part of the paper.

This content is only available via PDF.
You do not currently have access to this content.