The U.S. Department of Energy Office of Legacy Management is investigating alternatives to conventional cover designs for uranium mill tailings. A cover constructed in 2000 near Monticello, Utah, USA, was a redundant design with a conventional low-conductivity composite cover overlain with an alternative cover designed to mimic the natural soil water balance as measured in nearby undisturbed native soils and vegetation. To limit percolation, the alternative cover design relies on a 160-cm layer of sandy clay loam soil overlying a 40-cm sand capillary barrier for water storage, and a planting of native sagebrush steppe vegetation to seasonally release soil water through evapotranspiration (ET). Water balance monitoring within a 3.0-ha drainage lysimeter, embedded in the cover during construction, provided convincing evidence that the cover has performed well over a 9-year period (2000–2009). The total cumulative percolation, 4.8 mm (approximately 0.5 mm yr−1), satisfied a regulatory goal of <3.0 mm yr−1. Most percolation can be attributed to the very wet winter and spring of 2004–2005, when soil water content exceeded the storage capacity of the cover. Diversity, percent cover, and leaf area of vegetation increased over the monitoring period. Field and laboratory evaluations several years after construction show that soil structural development, changes in soil hydraulic properties, and development of vegetation patterns have not adversely impacted cover performance. A new test facility was constructed in 2008 near Grand Junction, Colorado, USA, to evaluate low-cost methods for renovating or transforming conventional covers into more sustainable ET covers.

This content is only available via PDF.
You do not currently have access to this content.