In the environment, metallic uranium readily oxidizes to form uranium compounds that contain the uranyl (UO2+2) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450–650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system as a tool for locating and quantifying uranyl compounds dispersed in soils and on other surfaces. A project is underway to develop a set of sensors to locate expended depleted uranium (DU) rounds and to process soil and debris to recover the material from domestic firing ranges. The FSI system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow bandpass filter on a camera, recording an image of the resulting fluorescence. The FSI image provides both spatial and spectral information. The FSI system is described and its performance characterized using field samples.

This content is only available via PDF.
You do not currently have access to this content.