A new building, a maintenance facility, is to be constructed in the ‘separation area’ of the Sellafield Site. Sellafield is a complex and busy nuclear facility covering about two square miles in the north-west of the United Kingdom. The facility, which is to provide necessary storage and maintenance functionality to support bulk waste retrievals from legacy silos, is being built in close proximity to spent fuel storage ponds, intermediate level legacy waste stores and a pipebridge carrying active materials. In addition, the site is adjacent to a main pedestrian and vehicle thoroughfare and a railway line used for the regular transfer of nuclear materials. The facility itself is to be built on the site of a recently demolished active facility. The ambient gamma dose rates in the construction area have been measured to be typically 5 to 50 μSv/hr. Although there are known specific sources of dose rate close to the construction site, the relative contributions of each within the envelope of the new facility are unknown. This paper describes how a series of gamma dose rate measurements, gamma spectroscopy measurements and gamma-ray imaging surveys, using RadScan® 800, have been used to better understand the origins of the dose rates at a number of key locations within the area. The results of the survey are being used to assess the requirements for shielding within the structure of the facility in order to reduce the dose to personnel that will work there when it is operational. The results are also being used to identify whether any localised shielding would prove beneficial for reduction of the dose both during construction and occupancy. The unique mix of facilities surrounding the site have meant that the contributions to the dose rate come not only from adjacent facilities in the form of unscattered, higher energy, penetrating radiation, but also in the form of lower energy scattered radiation, both from radiation that has passed through shielding and also in the form of skyshine. Skyshine is the term for the radiation that has escaped a facility and ‘bounced’ off the sky to return to earth. The radiometric measurements, which were collected over a period of a few days, were able to provide a useful understanding of each of these sources of dose, and to quantify the relative contributions of each.

This content is only available via PDF.
You do not currently have access to this content.