Utilization facilities for radioisotope (RI) are increasing annually in South Korea, and the total number was 2,723, as of December 31, 2005. The inspection of a clearance level is a very important problem in order to ensure a social reliance for releasing radioactive materials to the environment. Korean regulations for such a clearance are described in Notice No. 2001–30 of the Ministry of Science and Technology (MOST) and Notice No. 2002–67 of the Ministry of Commerce, Industry and Energy (MOCIE). Most unsealed sources in RI waste drums at a storage facility are low-level beta-emitters with short half-lives, so it is impossible to measure their inventories by a nondestructive analysis. Furthermore, RI wastes generated from hospital, educational and research institutes and industry have a heterogeneous, multiple, irregular, and a small quantity of a waste stream. This study addresses a representative (master) sampling survey and analysis plan for RI wastes because a complete enumeration of waste drums is impossible and not desirable in terms of a cost and efficiency. The existing approaches to a representative sampling include a judgmental, simple random, stratified random, systematic grid, systematic random, composite, and adaptive sampling. A representative sampling plan may combine two or more of the above sampling approaches depending on the type and distribution of a waste stream. Stratified random sampling (constrained randomization) is proven to be adequate for a sampling design of a RI waste regarding a half-life, surface dose, undertaking time to a storage facility, and type of waste. The developed sampling protocol includes estimating the number of drums within a waste stream, estimating the number of samples, and a confirmation of the required number of samples. The statistical process control for a quality assurance plan includes control charts and an upper control limit (UCL) of 95% to determine whether a clearance level is met or not.

This content is only available via PDF.
You do not currently have access to this content.