In order to ensure that a repository for the geological disposal of HLW is isolated from the human environment, underground excavations, including pits and tunnels, must be properly sealed. Effective sealing requires that these excavations are backfilled, and that the Excavation Damage or Disturbed Zone (EDZ), which includes preferential flowpaths, must be intersected by sealing plugs. Methods for constructing a full-scale sealing plug and their influence on plug performance were evaluated and confirmed by a Tunnel Sealing Experiment (TSX). This experiment was carried out by an international partnership of the Japan Nuclear Cycle Development Institute (JNC) and Atomic Energy of Canada Limited (AECL). However certain specific roles of the sealing plugs at the scale of the whole repository were not studied. There remain issues to be clarified, notably the effectiveness of sealing plugs in a geological environment with heterogeneous characteristics and the resulting influences of the heterogeneities in performance assessment. Focusing on a geological environment with spatially heterogeneous characteristics, the authors have developed a method for designing the sealing plugs, based on a concept of “primarily design for closure, secondarily design for construction”. Though the proposed method for designing sealing plugs has presently been developed only at a conceptual level, it indicates the possibility of establishing a repository even in a strongly heterogeneous geological environment that may have been considered previously to be inappropriate for a repository.

This content is only available via PDF.
You do not currently have access to this content.