The dose criterion used to derive clearance and exemption levels is of the order of 0.01 mSv/y based on the Basic Safety Standard (BSS) of the International Atomic Energy Agency (IAEA), the use of which has been agreed upon by many countries. It is important for human beings, who are facing the fact that global resources for risk reduction are limited, to carefully consider the practical implementation of radiological protection systems, particularly for low-radiation-dose regions. For example, in direct gamma ray monitoring, to achieve clearance level compliance, difficult issues on how the uncertainty (error) of gamma measurement should be handled and also how the uncertainty (scattering) of the estimation of non-gamma emitters should be treated in clearance must be resolved. To resolve these issues, a new probabilistic approach has been proposed to establish an appropriate safety factor for compliance with the clearance level in Japan. This approach is based on the fundamental concept that 0.1 mSv/y should be complied with the 97.5th percentile of the probability distribution for the uncertainties of both the measurement and estimation of non-gamma emitters. The International Commission on Radiological Protection, ICRP published a new concept of the representative person in Publication 101 Part I. The representative person is a hypothetical person exposed to a dose that is representative of those of highly exposed persons in a population. In a probabilistic dose assessment, the ICRP recommends that the representative person should be defined such that the probability of exposure occurrence is lower than about 5% that of a person randomly selected from the population receiving a high dose. From the new concept of the ICRP, it is reasonable to consider that the 95th percentile of the dose distribution for the representative person is theoretically always lower than the dose constraint. Using this established relationship, it can be concluded that the minimum dose constraint that requires optimization in radiological protection should be set to the dose criterion of 0.1 mSv/y, considering the fundamental concept used in the clearance criterion for resolving the issues on uncertainty in clearance.

This content is only available via PDF.
You do not currently have access to this content.