The objective of our research is to screen and search for suitable plant species for phytoremediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds. Phytoremediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phytoextraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phytoextraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyperaccumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl2, and Hg(NO3)2, were used as contaminant sources. Different types of soil were examined and chosen for phytoremediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phytoremediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots (<65 mg/kg), even though root mercury accumulation is significant (maximum 2298 mg/kg). Consequently, this plant species may not be suitable for mercury phytoremediation. Other plant species, such as Indian mustard (Brassica juncea), a well-studied metal accumulator, exhibited severe chlorosis symptoms during some experiments. Among all the plant species studied, Chinese brake fern (Pteris vittata) accumulated significant amount of mercury in both roots and shoots and hence may be considered as a potential candidate for mercury phytoextraction. During one experiment, Chinese brake ferns accumulated 540 mg/kg and 1469 mg/kg in shoots after 18 days of growing in soils treated with 500 parts-per-million (ppm) and 1000 ppm HgCl2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phytoremediation using aged soils that contained HgS, HgCl2, or Hg(NO3)2. We have found that up to hundreds of ppm mercury can be accumulated in the roots of Indian mustard plants grown with soil contaminated by mercury sulfide; HgS is assumed to be the most stable and also the predominant mercury form in floodplain soils. We have also started to investigate different mercury uptake mechanisms, such as root uptake of soil contaminant and foliar mercury accumulation from ambient air. We have observed mercury translocation from roots to shoot for Chinese fern and two Indian mustard varieties.
Skip Nav Destination
The 11th International Conference on Environmental Remediation and Radioactive Waste Management
September 2–6, 2007
Bruges, Belgium
Conference Sponsors:
- Nuclear Division and Environmental Engineering Division
ISBN:
978-0-7918-4339-0
PROCEEDINGS PAPER
Accumulation of Mercury in Selected Plant Species Grown in Soils Contaminated With Different Mercury Compounds
Fengxiang Han,
Fengxiang Han
Mississippi State University, Starkville, MS
Search for other works by this author on:
Safwan Shiyab,
Safwan Shiyab
Mississippi State University, Starkville, MS
Search for other works by this author on:
Jian Chen,
Jian Chen
Mississippi State University, Starkville, MS
Search for other works by this author on:
David L. Monts
David L. Monts
Mississippi State University, Starkville, MS
Search for other works by this author on:
Yi Su
Mississippi State University, Starkville, MS
Fengxiang Han
Mississippi State University, Starkville, MS
Safwan Shiyab
Mississippi State University, Starkville, MS
Jian Chen
Mississippi State University, Starkville, MS
David L. Monts
Mississippi State University, Starkville, MS
Paper No:
ICEM2007-7123, pp. 1001-1007; 7 pages
Published Online:
May 29, 2009
Citation
Su, Y, Han, F, Shiyab, S, Chen, J, & Monts, DL. "Accumulation of Mercury in Selected Plant Species Grown in Soils Contaminated With Different Mercury Compounds." Proceedings of the The 11th International Conference on Environmental Remediation and Radioactive Waste Management. 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B. Bruges, Belgium. September 2–6, 2007. pp. 1001-1007. ASME. https://doi.org/10.1115/ICEM2007-7123
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
A Predictive Electrochemical Model for Weld Metal Hydrogen Pickup in Underwater Wet Welds
J. Offshore Mech. Arct. Eng (November,1998)
Molten Salt Spectroscopy for Quantification of Radiative Absorption in Novel Metal Chloride-Enhanced Thermal Storage Media
J. Sol. Energy Eng (August,2015)
High-Speed Surface Plasmon Resonance (SPR) Reflectance Imaging of Drop Coalescence during Condensation and Evaporation
J. Heat Transfer (August,2016)
Related Chapters
Contamination and Impacts of Exploration and Production Waste Constituents
Guidebook for Waste and Soil Remediation: For Nonhazardous Petroleum and Salt Contaminated Sites
Dismantling
Decommissioning Handbook
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies