Encapsulation in cement is the favoured method in the UK for disposal of intermediate and low level radioactive wastes. It is usual to use composite cement systems incorporating blast furnace slag (BFS) or pulverised fuel ash (PFA) as these offer several advantages over Portland cement, notably a lower heat of hydration. The use of these mineral additions utilises a waste product which would itself need a disposal route and, because of the decreased amount of Portland cement used, provides a reduction in cost and energy consumption. Cementitious systems have many attributes which make them suitable for encapsulation and immobilisation, including: • Inexpensive and readily available; • Assist immobilisation of radionuclides by: a) acting as a diffusion barrier, b) providing sorption and reaction sites, c) maintaining a high pH which in turn decreases radionuclide solubility; • Provide radiation shielding which is not degraded by the radiation; • Controllable permeation and diffusion characteristics over a wide range via selection of constituents and components. Where physical adsorption is a significant factor for immobilisation, the calcium silicate hydrate gel (C-S-H) formed on hydration of a Portland cement is advantageous as it has a high surface area and large micropore volume. Composite cements based on blast furnace slag will produce a higher proportion of C-S-H than ordinary Portland cement increasing the sorption capacity, and reducing the capillary porosity so that the diffusion resistance is increased. Intermediate level waste covers a wide range of materials, for example, metals and ion exchangers, each with differing chemical properties. It is, therefore, necessary to access the ability of the cementitious system to immobilise different wastes and to characterise the products formed. It is also necessary that alternative encapsulant materials be considered for immobilising wastes not suited to the composite cements already being used. The techniques employed to do this include x-ray diffraction (XRD), to identify standard and non-standard hydration products, isothermal conduction calorimetry (ICC) and scanning electron microscopy (SEM).
Skip Nav Destination
ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation
September 21–25, 2003
Oxford, England
Conference Sponsors:
- Nuclear Engineering Division and Environmental Engineering Division
ISBN:
0-7918-3732-7
PROCEEDINGS PAPER
Cementitious Systems for Encapsualation of Intermediate Level Waste
J. H. Sharp,
J. H. Sharp
University of Sheffield, Sheffield, UK
Search for other works by this author on:
N. B. Milestone,
N. B. Milestone
University of Sheffield, Sheffield, UK
Search for other works by this author on:
E. W. Miller
E. W. Miller
BNFL, Warrington, England
Search for other works by this author on:
J. H. Sharp
University of Sheffield, Sheffield, UK
J. Hill
University of Sheffield, Sheffield, UK
N. B. Milestone
University of Sheffield, Sheffield, UK
E. W. Miller
BNFL, Warrington, England
Paper No:
ICEM2003-4554, pp. 1425-1433; 9 pages
Published Online:
February 24, 2009
Citation
Sharp, JH, Hill, J, Milestone, NB, & Miller, EW. "Cementitious Systems for Encapsualation of Intermediate Level Waste." Proceedings of the ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3. Oxford, England. September 21–25, 2003. pp. 1425-1433. ASME. https://doi.org/10.1115/ICEM2003-4554
Download citation file:
26
Views
Related Proceedings Papers
Related Articles
Effect of Zirconium Oxide Reinforcement on Microstructural, Electrochemical, and Mechanical Properties of TiNi Alloy Produced via Powder Metallurgy Route
J. Eng. Mater. Technol (October,2021)
Nanostructural Alteration in Bone Quantified in Terms of Orientation Distribution of Mineral Crystals: A Possible Tool for Fracture Risk Assessment
J Biomech Eng (December,2011)
Machine Learning the Concrete Compressive Strength From Mixture Proportions
ASME Open J. Engineering (January,2022)
Related Chapters
New Implications for Geo-Mechanism of the Sandstone Diagenesis, from Diagenetic Heterogeneity of Lenticular Sandbody in Shahejie Formation, Bohai Bay Basin
International Conference on Electronics, Information and Communication Engineering (EICE 2012)
Orientation Ability of Clay Minerals in Sliding - Soil from X-Ray Diffraction and Its Effects on Landslide
Geological Engineering: Proceedings of the 1 st International Conference (ICGE 2007)
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies